
Introduction To IoT Reverse
Engineering

with an example on a home router

Valerio Di Giampietro
Linux enthusiast since 1993

http://va.ler.io
v@ler.io
@valerio

©Valerio Di Giampietro - This work is licensed under a Creative Commons Attribution 4.0 International License

• Introduction

• Information gathering

• Emulation environment using QEMU

• Analyze how the device works

• Modify the firmware

What we will talk about …

Firenze, December 3rd 2018 – Pag. 2● ○ ○ ○ ○ - Introduction

Firenze, December 3rd 2018 – Pag. 2

Firenze, December 3rd 2018 – Pag. 2

● ○ ○ ○ ○ - Introduction

What is “engineering”? “the science of making
things”
• Define ”product requirements”
• Design the product
• Build or manufacture the product

Engineering

Firenze, December 3rd 2018 – Pag. 3

Requirements Design Blueprint Product

What is ”reverse engineering”?

• It is the ”engineering” process done in reverse order

and, usually, with limited scope

What is this example project “limited scope”?

• Understand how to modify the router firmware to

add features and additional programs

● ○ ○ ○ ○ - Introduction

Reverse Engineering

Firenze, December 3rd 2018 – Pag. 4

RequirementsDesign BlueprintProduct

• Who makes the device?

• Is there an ODM (Original Design
Manufacturer)?

• Open the case

• Identify main device components

• Locate UART and possibly JTAG
Interfaces

• Get the firmware and the root file
system

○ ● ○ ○ ○ - Information Gathering

Information Gathering

Firenze, December 3rd 2018 – Pag. 5

D-Link DVA 5592
example home router

○ ● ○ ○ ○ - Information Gathering

Mainboard Top

Firenze, December 3rd 2018 – Pag. 6

JTAG?

BCM6303
XDSL CPE

Line Driver

ZL88801
Telephone

Module

UART

○ ● ○ ○ ○ - Information Gathering

Mainboard Bottom

Firenze, December 3rd 2018 – Pag. 7

MX30LF2G18AC
Nand Flash 256Mb

BCM43217
WiFi Module

CPU?

○ ● ○ ○ ○ - Information Gathering

Locate the UART interface

Firenze, December 3rd 2018 – Pag. 8

• Search on Internet

• Identify potential serial headers candidates

• Sometimes marked in the PCB’s silkscreen

• Usually 4 pins: Vcc, Gnd, Tx, Rx

• Use a multimeter to find potential

candidates

• Locate pins on SOC and follow PCB traces

• Use tools like Jtagulator

• Oscilloscope or Logic Analyzer to locate Tx

(a little overkill)

UART on various boards

○ ● ○ ○ ○ - Information Gathering

The JTAG interface

Firenze, December 3rd 2018 – Pag. 9

• JTAG is an industry standard for testing printed circuit
boards after manufacture

• Allows access to read/write flash memory contents and
can be used as a primary means for an in-circuit
emulator

• Multiple devices are daisy-chained together

• Pins:
TCK test clock
TDI test data in
TDO test data out
TMS test mode sel.
TRST test reset (opt.)

○ ● ○ ○ ○ - Information Gathering

Locate the JTAG interface

Firenze, December 3rd 2018 – Pag. 10

• No standard pinout, but few popular
pinouts: http://www.jtagtest.com/pinouts/

• Search on Internet

• Look for headers labeled TCK, TDI, TDO, TMS

• Look for 1x5/6, 2x5, 2x7, 2x10 pin headers
– Look for GND and VCC with a multimeter and

compare to popular pinouts

– Often there are pullups (1-100k) for TMS, TDI
and TRST, TRST can also be pulled low

– TDO should be high impedance

• Locate pins on SOC and follow PCB traces

• Use tools like Jtagulator

http://www.jtagtest.com/pinouts/

○ ● ○ ○ ○ - Information Gathering

Repopulate the interfaces

Firenze, December 3rd 2018 – Pag. 11

Connect the serial cable

○ ● ○ ○ ○ - Information Gathering

Why repopulate the interfaces?

Firenze, December 3rd 2018 – Pag. 12

• UART (Serial Interface)
– Watch what is printed on the serial console during the boot cycle

and find bootloader and OS version

– Watch the firmware upgrade cycle

– Use a USB TTL serial adapter and a terminal emulator on the PC

• JTAG
– Be able to read the firmware out of the flash eeprom

– Be able to break into the boot cycle and use JTAG as a means to
do ”in circuit debugging”

– Attach an interface board, like Bus Pirate, to the JTAG interface

– Use software, as OpenOCD, to dump flash eeprom and to do ”in
circuit debugging”

○ ● ○ ○ ○ - Information Gathering

Getting the firmware file

Firenze, December 3rd 2018 – Pag. 13

• Follow the easiest path first
• If the supplier has a website with firmware updates

go and download the firmware file
• If the firmware update can be downloaded directly

only by the device, sniff the communication with
wireshark and get the firmware file

• If the above steps are not available, download the
eeprom image through the JTAG connector using Bus
Pirate and OpenOCD

○ ● ○ ○ ○ - Information Gathering

Get info from the firmware

Firenze, December 3rd 2018 – Pag. 14

• Get basic info from the firmware file

$ file DVA-5592_A1_WI_20180405.sig
DVA-5592_A1_WI_20180405.sig: data

$ binwalk DVA-5592_A1_WI_20180405.sig
DECIMAL HEXADECIMAL DESCRIPTION

512 0x200 JFFS2 filesystem, little endian
24379992 0x1740258 gzip compressed data, from

Unix, last modified:
2018-04-11 10:40:16

○ ● ○ ○ ○ - Information Gathering

Extract content from firmware

Firenze, December 3rd 2018 – Pag. 15

• Install Jefferson to extract files from JFFS2 file system
• Use binwalk to extract content from firmware

$ binwalk -e DVA-5592_A1_WI_20180405.sig

$ ls -lh _DVA-5592_A1_WI_20180405.sig.extracted
-rw-rw-r-- 1 val val 30K ott 21 13:28 1740258
-rw-rw-r-- 1 val val 24M ott 21 13:27 200.jffs2
drwxrwxr-x 5 val val 4,0K ott 21 13:28 jffs2-root

$ file 1740258
1740258: POSIX tar archive (GNU)

$ tar -tvf 1740258
drwxr-xr-x l.fornalczyk/adb boards/
drwxr-xr-x l.fornalczyk/adb boards/963138_VD5….ipk

○ ● ○ ○ ○ - Information Gathering

Looking at the extracted files

Firenze, December 3rd 2018 – Pag. 16

• Looking at the extracted files
$ ls jffs2-root/
fs_1 fs_2 fs_3

• It seems we have 3 file systems here: “/boot” and “/”
splitted in two parts
$ ls -lh fs_1
-rw-r--r-- 1 val val 0 ott 21 13:28 a
-rw-r--r-- 1 val val 260K ott 21 13:28 cferam.000
-rw-r--r-- 1 val val 1,2M ott 21 13:28 vmlinux.lz

• cferam.000 is the boot loader image based on Broadcom
CFE (Common Firmware Environment)

• vmlinux.lz is the kernel, in an unusual CFE compressed
format

○ ● ○ ○ ○ - Information Gathering

Looking at other files

Firenze, December 3rd 2018 – Pag. 17

• /sbin/init is missing (but it’s not true), busybox is there

$ ls -lh fs_2/bin/busybox
-rwsr-sr-x 1 val val 382K fs_2/bin/busybox
$ strings fs_2/bin/busybox
…
BusyBox v1.17.3 (2018-04-11 12:29:54 CEST)
…

$ arm-linux-readelf -a fs_2/bin/busybox
…
… program interpreter: /lib/ld-uClibc.so.0]

$ ls -lh fs_2/lib/ld-uClibc*
-rwxr-xr-x ld-uClibc-0.9.33.2.so
lrwxrwxrwx ld-uClibc.so.0 -> ld-uClibc-0.9.33.2.so

$ ls -l fs_3/lib/libgcrypt.so.11*
lrwxrwxrwx libgcrypt.so.11 -> libgcrypt.so.11.5.3
-rwxr-xr-x libgcrypt.so.11.5.3

○ ● ○ ○ ○ - Information Gathering

Boot output on serial console

Firenze, December 3rd 2018 – Pag. 18

• Output on serial console during boot

...
CFE version 1.0.38-118.3-S for BCM963138 (32bit,SP,LE)
generic
...
Chip ID: BCM63136B0, ARM Cortex A9 Dual Core: 1000MHz
Total Memory: 268435456 bytes (256MB)
NAND ECC BCH-4, page size 0x800 bytes, spare size 64 bytes
NAND flash device: , id 0xc2da block 128KB size 262144KB
...
Linux version 3.4.11-rt19 (l.fornalczyk@quelo) (gcc version
4.5.4 20120306 (prerelease) (Linaro GCC 4.5-2012.03))
...
CPU: ARMv7 Processor [414fc091] revision 1 (ARMv7)
...
jffs2: version 2.2 (NAND) (SUMMARY) (ZLIB) (LZMA) (RTIME)
...

○ ● ○ ○ ○ - Information Gathering

Boot output on serial console

Firenze, December 3rd 2018 – Pag. 19

• Output on serial console during boot (part 2)
...
[2.502000] Found YAPS PartitionSplit Marker at 0x080FFF00
[2.503000] Creating 8 MTD partitions on "brcmnand.0":
[2.504000] 0x000000000000-0x000000020000 : "CFE”
[2.506000] 0x000007f00000-0x000008100000 : "bootfs_1”
[2.508000] 0x000008100000-0x00000fbc0000 : "rootfs_1”
[2.510000] 0x000000020000-0x000007ce0000 : "upgrade”
[2.512000] 0x00000fbc0000-0x00000fdc0000 : "conf_fs”
[2.513000] 0x00000fdc0000-0x00000fe00000 : "conf_factory”
[2.515000] 0x00000fe00000-0x000010000000 : "bbt”
[2.517000] 0x000000000000-0x000010000000 : "flash”
...
Init started: BusyBox v1.17.3 (2018-04-11 12:29:54 CEST)
starting pid 235, tty '': '/etc/init.d/rcS S boot’
Starting boot.sh ...
Restore passwd
Restore group
Starting /etc/rc.d/S11services.sh ...
Starting Configuration Manager (B)

/etc/inittab
::sysinit:/etc/init.d/rcS S boot
::shutdown:/etc/init.d/rcS K shutdown
tts/0::askfirst:/bin/login
ttyS0::askfirst:/bin/login

○ ● ○ ○ ○ - Information Gathering

Boot output on serial console

Firenze, December 3rd 2018 – Pag. 20

• Output on serial console during boot (part 3)
...
CM TR-181 ready
CM TR-98 ready
Epicentro Software Version: DVA-5592_A1_WI_20180405
Epicentro Platform Version: 6.0.0.0028
...
Starting /etc/rc.d/S13acsd.sh ...
Starting /etc/rc.d/S20voip.sh ...
Starting /etc/rc.d/S60ipsec.sh ...
Starting /etc/rc.d/S70vpn.sh ...
Starting /etc/rc.d/S94printkd.sh ...

Searching «Epicentro Software» on Internet
gives the ODM (Original Design
Manufacturer): ADB www.adbglobal.com

○ ● ○ ○ ○ - Information Gathering

What was found

Firenze, December 3rd 2018 – Pag. 21

• Processor ARMv7 Cortex-A9 Multicore

• 256Mb NAND Flash

• Linux version 3.4.11-rt19 (September 2012)

• uClibc version 0.9.33.2 (May 2012)

• BusyBox version 1.17.3 (October 2010)

• Libgcrypt version 1.4.5 (December 2009)

• Epicentro software by ADB (adbglobal.com)

○ ○ ● ○ ○ - Emulation Environment using QEMU

QEMU Emulation

Firenze, December 3rd 2018 – Pag. 22

• Choosing Board and CPU emulation in QEMU
$ qemu-system-arm -M help|egrep Cortex-A9
realview-pbx-a9 ARM RealView Platform for Cortex-A9
vexpress-a9 ARM Versatile Express for Cortex-A9
xilinx-zynq-a9 Xilinx Zynq Platform for Cortex-A9

$ qemu-system-arm -M vexpress-a9 -cpu help
...
cortex-a9
...

○ ○ ● ○ ○ - Emulation Environment using QEMU

Choosing a Build System

Firenze, December 3rd 2018 – Pag. 23

• The Yocto Project
very powerful, builds a root file system and create a
custom Linux distribution. It's main drawback is that it
has a steep learning curve

• Buildroot
builds the root file system and the kernel, easy and fast to
learn, very good user manual

• Openwrt/LEDE Build System
tailored to build a replacement router firmware,
documentation scattered in the web site, requires more
time to learn compared to Buildroot

○ ○ ● ○ ○ - Emulation Environment using QEMU

Choosing a Buildroot version

Firenze, December 3rd 2018 – Pag. 24

• Based on uClibc 0.9.33.2
• Gnu libgcrypt crypto library compatible with

version 1.5 (with library file: libgcrypt.so.11)
• With custom kernel version 3.4.1-rt19
• Other libraries with compatible versions
• The version to use is: buildroot-2014.02
• This version doesn’t run on Ubuntu 16.04 or

Ubuntu 18.04
• Use Debian Wheezy (released in 2013) in a

docker Container

○ ○ ● ○ ○ - Emulation Environment using QEMU

The Dockerfile

Firenze, December 3
rd

2018 – Pag. 25

• The Dockerfile builds a minimal Debian Wheezy

container to run Buildroot

FROM debian:wheezy
...
RUN apt-get update
RUN apt-get upgrade
RUN apt-get install -y -q \

bash \
...
RUN mkdir -p /src/misc
ADD startup.sh /src/misc/startup.sh
RUN chmod a+x /src/misc/startup.sh
ENTRYPOINT cd /src/misc ; ./startup.sh

• Available at: https://github.com/digiampietro/buildroot-armv7

https://github.com/digiampietro/buildroot-armv7

○ ○ ● ○ ○ - Emulation Environment using QEMU

The Docker run command

Firenze, December 3rd 2018 – Pag. 26

• The Docker run maps user and user’s home
directory in the Docker Container
docker run -h BRHOST \

--rm \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $HOME:$HOME \
-e DISPLAY=$GDISPLAY \
-e GUSERNAME=$GUSERNAME \
-e GUID=$GUID \
-e GGROUP=$GGROUP \
-e GGID=$GGID \
-e GHOME=$GHOME \
-e GSHELL=$SHELL \
-e GRUNXTERM=$GRUNXTERM \
-e GPWD=$GPWD \
-it digiampietro/buildroot-armv7

○ ○ ● ○ ○ - Emulation Environment using QEMU

Docker run in action

Firenze, December 3rd 2018 – Pag. 27

valerio@ubuntu-hp:~$ ls -ld br
drwxrwxr-x 6 valerio valerio 4096 ott 26 22:30 br

valerio@ubuntu-hp:~$ grep VERSION /etc/os-release
VERSION="18.04.1 LTS (Bionic Beaver)"
VERSION_ID="18.04"
VERSION_CODENAME=bionic
valerio@ubuntu-hp:~$ br/..../docker/dockrun.sh

valerio@BRHOST:~$ ls -ld br
drwxrwxr-x 6 valerio valerio 4096 Oct 26 20:30 br

valerio@BRHOST:~$ grep VERSION /etc/os-release
VERSION_ID="7"

VERSION="7 (wheezy)"

○ ○ ● ○ ○ - Emulation Environment using QEMU

Buildroot configuration

Firenze, December 3rd 2018 – Pag. 28

• Based on “qemu_arm_vexpress_defconfig”
• With the following main modifications
– Build packages and libraries with debugging

symbols, don’t strip binaries, no gcc optimization
– Build gdb, gdbserver, ltrace, strace and cross gdb

for the host
– Include mtd and jffs2 file system and tools also for

the host
– Include main libraries used in the router

(libgcrypt, expat, roxml, libxml2, Mini-XML)

○ ○ ● ○ ○ - Emulation Environment using QEMU

Linux kernel configuration

Firenze, December 3
rd

2018 – Pag. 29

• With the following additional settings

– Versatile Express platform type with Device Tree

support

– Preemptible Kernel

– NAND Device Support and Support for NAND

Flash Simulator

– JFFS2 file system with LZMA compression

○ ○ ● ○ ○ - Emulation Environment using QEMU

uClibc configuration

Firenze, December 3rd 2018 – Pag. 30

• Minor modifications to be compatible with the
router's binaries (like native POSIX threading etc.)

• To include debugging symbols, uClibc don't obey
to the general option included in the Buildroot
configuration, has his own flag for this purpose;
the problem is that enabling his own flag the
compilation gives impossible to fix errors

• in Compiler Warnings add the string "-ggdb", this
is the work around to compile the uClibc with
debugging symbols

○ ○ ○ ● ○ - Analyze how the device works

The upgrade process
• Analyzing the upgrade process on the UART output (1 of 2)
Start pid 4 /usr/sbin/upgrade-prepare.sh cwmp
...
/usr/sbin/upgrade.sh
Signature OK
...
/usr/sbin/flash_eraseall \

-j -p 0 -l 8 /dev/mtd3
...
Writing boot & root filesystems...
dd if=/tmp/upgrade/fw.bin bs=256 skip=514 count=94720
| /usr/sbin/nandwrite -s 524288 /dev/mtd3 –
...
[…] Found YAPS PartitionSplit Marker at 0x080FFF00
[…] Creating 2 MTD partitions on "brcmnand.0":
[…] 0x000007f00000-0x000008100000 : "bootfs_2”
[…] 0x000008100000-0x00000fcc0000 : "rootfs_2"

Firenze, December 3rd 2018 – Pag. 31

Boot and
Root file
system

FIRMWARE FILE

514 * 256

(514+94720)*256

○ ○ ○ ● ○ - Analyze how the device works

The upgrade process

Firenze, December 3rd 2018 – Pag. 32

• Analyzing the upgrade process on the UART output (2 of 2)
Installing packages...
opkg … -f /tmp/new_rootfs/etc/opkg.conf -o
/tmp/new_rootfs install …
Umount /tmp/new_rootfs
...
Writing first block of cferam...
dd if=/tmp/upgrade/fw.bin bs=256 skip=2 count=512 |
/usr/sbin/nandwrite /dev/mtd8 -
...
rebooting...

○ ○ ○ ● ○ - Analyze how the device works

The upgrade process - summary

Firenze, December 3rd 2018 – Pag. 33

• The upgrade script to analyze is /usr/sbin/upgrade.sh
• The firmware is signed, signature is checked with
sig_verify $file 2> /dev/null

• Boot and root file systems are written in a single nandwrite
operation

• A JFFS2 partition splitter proprietary kernel module is used to
create the two partitions on the fly

• A JFFS2 end marker open source kernel module is used to
delimit the end of the root file system partition

• Some additional packages are added, based on board type
• The cferam boot loader is written with another nandwrite

operation

○ ○ ○ ● ○ - Analyze how the device works

Reverse engineering sig_verify

Firenze, December 3rd 2018 – Pag. 34

sig_verify is a stripped binary, but calls library functions. We
put breakpoints on these calls in the emulation environment
$ arm-linux-readelf --sym -D sig_verify
Symbol table for image:

Num Buc: Value Size Type Bind Vis Ndx Name
16 0: 00008928 0 FUNC GLOBAL DEFAULT UND fseek
29 1: 00008994 0 FUNC GLOBAL DEFAULT UND strcmp
40 3: 000089dc 0 FUNC GLOBAL DEFAULT UND gcry_md_ctl
38 11: 000089d0 0 FUNC GLOBAL DEFAULT UND fputs
23 14: 00008964 0 FUNC GLOBAL DEFAULT UND fread
1 15: 00008898 0 FUNC GLOBAL DEFAULT UND printf

44 16: 00008a0c 0 FUNC GLOBAL DEFAULT UND gcry_md_get_algo…
41 16: 000089e8 0 FUNC GLOBAL DEFAULT UND close
9 17: 000088e0 0 FUNC GLOBAL DEFAULT UND lseek
7 19: 000088c8 0 FUNC GLOBAL DEFAULT UND gcry_md_open
6 19: 000088bc 0 FUNC GLOBAL DEFAULT UND gcry_md_write
3 20: 000088a4 0 FUNC GLOBAL DEFAULT UND gcry_check_version

...

○ ○ ○ ● ○ - Analyze how the device works

Running sig_verify in GDB

Firenze, December 3rd 2018 – Pag. 35

Start gdb server in the emulation environment
gdbserver :9000 sig_verify --readonly \

DVA-5592_A1_WI_20180405.sig

Start gdb in the host machine
$ arm-linux-gdb --ex="target remote :9000" \

--ex="set sysroot $SYSROOT"\
--ex="directory $MYDIR" \
--ex="directory $TOOLBIN" \

-x sv.gdb

○ ○ ○ ● ○ - Analyze how the device works

Running sig_verify in GDB

Firenze, December 3rd 2018 – Pag. 36

• Reads the last 256 bytes from the file (signature)

• Calls gcry_md_open,gcry_md_write,
gcry_md_ctl to calculate SHA1 checksum

• Calls gcry_sexp_build 3 times to build the

3 s-expressions and then gcry_pk_verify to

verify the signature with the following

parameters

– SHA1 message digest
– Signature (the firmware file last 256 bytes)

– The public key (embedded in the file)

○ ○ ○ ● ○ - Analyze how the device works

Running sig_verify in GDB

Firenze, December 3rd 2018 – Pag. 37

• The public key (MPI modulus and

exponent) can be dumped from memory

to recover the public key in the standard

.pem format

• Unfortunately the private key remains

unknown, it is not included in router’s

certificates files in the folder /etc/certs

○ ○ ○ ● ○ - Analyze how the device works

Restricted shell

Firenze, December 3rd 2018 – Pag. 38

• Firmware modification through the upgrade process
seems impossible

• The router allows telnet/ssh but present a Cisco-like
restricted shell

$ telnet 192.168.1.1
Connected to 192.168.1.1.
Escape character is '^]'.
Login: admin
Password:
**
* D-Link *
* WARNING: Authorised Access Only *
**
Welcome
DLINK#

○ ○ ○ ● ○ - Analyze how the device works

Escaping the restricted shell

Firenze, December 3rd 2018 – Pag. 39

• /etc/shells suggests that the restricted shell is a Clish
(or Klish), open source, shell

• /bin/clish is a script:
#!/bin/sh
...
exec /bin/clish.elf -l -x /tmp/clish

• In /etc/init.d/services.sh:
#in factory mode
ln -s /etc/clish/prod /tmp/clish
#in normal mode
ln -s /etc/clish /tmp/clash

• clish xml startup files are:
/etc/clish/prod/startup.xml
/etc/clish/startup.xml

○ ○ ○ ● ○ - Analyze how the device works

Escaping the restricted shell

Firenze, December 3rd 2018 – Pag. 40

• In /etc/clish/startup.xml:
<COMMAND name="factory-mode" help="hidden">

<ACTION>cmclient DUMPDM FactoryData
/tmp/cfg/FactoryData.xml > /dev/null
nvramUpdate Feature 0x2 > /dev/null
cmclient REBOOT > /dev/null

</ACTION>
</COMMAND>

• ”factory-mode” is an hidden, not auto-completed command: it
is a command to try:
DLINK# factory
DLINK(factory)# factory-mode
DLINK(factory)#
DLINK(factory)# Connection closed by foreign
host.

○ ○ ○ ● ○ - Analyze how the device works

Escaping the restricted shell

Firenze, December 3rd 2018 – Pag. 41

• Factory mode is special mode: no normal WiFi, no
Internet connection, no DHCP server, but it allows a
non privileged shell login:

Login: admin
• Password:
• **
• * D-Link *
• * *
• * WARNING: Authorised Access Only *
• **
• Welcome

DLINK# system shell
BusyBox v1.17.3 built-in shell (ash)
Enter 'help' for a list of built-in commands.
/root $

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root

Firenze, December 3rd 2018 – Pag. 42

• Looking for processes running with root privileges
/root $ ps -ef
PID USER VSZ STAT COMMAND

1 0 1184 S init
261 0 724 S < /sbin/udevd --daemon
274 1001 1328 S /bin/clish.elf -l -x /tmp/clish
326 0 2332 S cm
365 0 1800 S logd
368 0 704 S ec
2383 0 820 S dns
2630 0 2480 S cwmp
2631 0 1204 S inetd -f
2633 0 736 S yamp -c /tmp/yamp.conf -p /tmp/…
2658 0 664 S wpspbc
3089 0 2316 S hostapd -B /tmp/wlan/config/ho…
3090 65534 3560 S httpd -u nobody
3647 0 1068 S chronyd -n -f /tmp/chrony.conf
4191 0 696 S /sbin/rngd -r /dev/urandom -W 4000
4211 0 7136 S voip
4404 1001 1176 S /bin/ash

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root - 1

Firenze, December 3rd 2018 – Pag. 43

• Identify each process and executable
version using “strings” and/or running the
executable with parameters
“-v -V –version -h -h –help”
• Identify open source executables
• Search the internet for known

vulnerabilities for the specific executable
version
• Check if the vulnerability is exploitable in

the specific IoT device configuration

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root - 2

Firenze, December 3rd 2018 – Pag. 44

• If no exploitable vulnerability has found
select a process candidate to reverse
engineer to find vulnerabilities
• Operating system binaries with no known

vulnerabilities are hard to crack
• Lower level binaries (dns, voip …) are

more difficult to crack
• Higher level executables with bigger

configuration files are less difficult to
crack

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root - 3

Firenze, December 3rd 2018 – Pag. 45

• The most interesting process is “cm”: router
configuration with root privileges is done by
the “cm” process (add users, configure dhcp
server, set ip address etc.)

• “cm” uses shell scripts to carry out his duties

• The “cmclient” command, running as normal
user, is used by restricted shell and web
interface to talk to the “cm” process to
configure the router

• “cmclient” is used, in startup scripts, to
configure the “cm” process

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root - 4

Firenze, December 3rd 2018 – Pag. 46

– In a startup script there is:

cmclient DOM Device /etc/cm/tr181/dom/

– This loads all the xml file in that directory to configure
the cm process, including
/etc/cm/tr181/dom/Management.xml

– That has the following snippet
<object name="Users.User.{i}."

access="readOnly"
minEntries="0"
maxEntries="unbounded"
numEntriesParameter="UserNumberOfEntries"
enableParameter="Enable"
set="Users.sh"
add="Users.sh"
del="Users.sh"

>

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root - 5

Firenze, December 3rd 2018 – Pag. 47

– To trigger an execution of our script:
cmclient DOM Device /tmp/fakeManagement.xml

– It has the following snippet
<object name="Users.User.{i}."

access="readOnly"
minEntries="0"
maxEntries="unbounded"
numEntriesParameter="UserNumberOfEntries"
enableParameter="Enable"
set="../../tmp/fakeUsers.sh"
add="../../tmp/fakeUsers.sh"
del="../../tmp/fakeUsers.sh"

>

– Trigger the execution of the «fakeUsers.sh» script with
– cmclient ADD Device.Users.User

○ ○ ○ ● ○ - Analyze how the device works

The Quest for Root - 7

Firenze, December 3rd 2018 – Pag. 48

/root $ cat > /tmp/hack-script.sh
do a copy and paste of the script
press CTRL-D to terminate the copy

/root $ chmod a+x /tmp/hack-script.sh
/root $ /tmp/hack-script.sh
...
/root $ su -
BusyBox v1.17.3 (2018-04-11) built-in shell (ash)
Enter 'help' for a list of built-in commands.
r41358.07b1b3a7
...
yet another solution by Advanced Digital Broadcast SA
...
root@localhost:~# id
uid=0(root) gid=0(root)
groups=0(root),19(remoteaccess),20(localaccess)

○ ○ ○ ○ ● - Create a Firmware Modification Kit

Firmware Modification Kit - 1

Firenze, December 3rd 2018 – Pag. 49

• Based on firmware upgrade script analysis the
firmware file has the following structure:

MD5 CHECKSUM
BOOT FILE SYSTEM

ROOT
FILE

SYSTEM

PARTITION SPLITTER

END OF PARTITION MARKER

SIGNATURE

ORIGINAL FIRMWARE

○ ○ ○ ○ ● - Create a Firmware Modification Kit

Firmware Modification Kit - 2

Firenze, December 3rd 2018 – Pag. 50

• Extract the root file system, modify it
• Create the new root file system image
• Pad the file system image to the same size as the

original root file system image (the USB key will
be used for additional software)

• Reassemble the firmware file putting together all
the pieces, excluding the signature, using the
”dd” command

• The unsigned firmware file is ready

○ ○ ○ ○ ● - Create a Firmware Modification Kit

Loading the unsigned firmware

Firenze, December 3rd 2018 – Pag. 51

• The upgrade script checks the firmware signature:
sig_verify $file 2> /dev/null
ret_code=$?

• As root copy the upgrade script in /tmp

• Modify it:
sig_verify $file 2> /dev/null
ret_code=0

• Temporary replace it with mount:
mount --bind /tmp/upgrade.sh \

/usr/sbin/upgrade.sh

• Do the upgrade through the web interface

○ ○ ○ ○ ○ - Summary

Summary

Firenze, December 3rd 2018 – Pag. 52

• Reverse engineering can be really challenging
• Clearly define the limited scope of your reverse

engineering project
• Start gathering information following the easiest

path first
• If some information is missing or difficult to get

move forward, go back only if absolutely needed
• Search on Internet for known vulnerabilities
• Select to hack processes running as root and

with a large attack surface

○ ○ ○ ○ ○

Useful Links & Documentation

Firenze, December 3rd 2018 – Pag. 53

GitHub repositories related to the Home Router Example
• Adbtools2, Tools for hacking ADB Epicentro routers, including firmware

modification: https://github.com/digiampietro/adbtools2
• Buildroot-armv7: a set of scripts, configuration files and Buildroot external tree

to setup a Qemu emulation environment to run and reverse engineer the
Netgear DVA 5592 executables: https://github.com/digiampietro/buildroot-
armv7

Reverse engineering and physical disassembly
• Introduction to reverse engineering, Mike Anderson, Embedded Linux

Conference 2018, slides and videos:
https://elinux.org/images/c/c5/IntroductionToReverseEngineering_Anderson.pdf
https://www.youtube.com/watch?v=7v7UaMsgg_c

Recommended Books
• Chris Simmonds - Mastering Embedded Linux Programming - Second Edition -

Packt Publishing 2017
• Norman Matloff , Peter Jay Salzman - The Art of Debugging with GDB , DDD and

Eclipse - NO STARCH PRESS 2008

https://github.com/digiampietro/adbtools2
https://github.com/digiampietro/buildroot-armv7
https://elinux.org/images/c/c5/IntroductionToReverseEngineering_Anderson.pdf
https://www.youtube.com/watch?v=7v7UaMsgg_c

○ ○ ○ ○ ○

Useful Links & Documentation

Firenze, December 3rd 2018 – Pag. 54

Hardware tools
• Bus Pirate: http://dangerousprototypes.com/docs/Bus_Pirate
• Jtagulator: http://www.grandideastudio.com/jtagulator/
• J-Link debug probes: https://www.segger.com/products/debug-probes/j-link/

JTAG and UART interfaces
• Popular pinouts: http://www.jtagtest.com/pinouts/

Software
• Buildroot: https://buildroot.org/
• Putty terminal emulator: https://www.putty.org/
• OpenOCD (Open On-Chip Debugger) provides debugging, in-system

programming and boundary-scan testing for embedded target devices:
http://openocd.org/

• Wireshark, network protocol analyzer: https://www.wireshark.org/
• Binwalk, firmware analysis tool: https://github.com/ReFirmLabs/binwalk
• Jefferson, JFFS2 filesystem extraction tool: https://github.com/sviehb/jefferson

http://dangerousprototypes.com/docs/Bus_Pirate
http://www.grandideastudio.com/jtagulator/
https://www.segger.com/products/debug-probes/j-link/
http://www.jtagtest.com/pinouts/
https://buildroot.org/
https://www.putty.org/
http://openocd.org/
https://www.wireshark.org/
https://github.com/ReFirmLabs/binwalk
https://github.com/sviehb/jefferson

○ ○ ○ ○ ○

Question Time

Firenze, December 3rd 2018 – Pag. 55

?
Question Time

○ ○ ○ ○ ○

The End

Firenze, December 3rd 2018 – Pag. 56

Thank You

